

RAD Agile

How to adapt RAD to Agile Quality Process
License : Creative Common By SA

 Matthieu GIROUX - www.liberlog.fr
 Member of www.caplibre.org
 Self programmer
 Installing and Customizing Web Sites
 Creating Management Softwares
 Created a Management framework

http://www.liberlog.fr/
http://www.caplibre.org/

RAD Agile

Table of Contents

1.Defining and History
2.(Very) Rapide Applications Development
3.Iterative Components Programming
4.Becoming éditeur with RAD or VRAD

1.1) Defining Rapid Applications
Development

Rapid Applications Development ou RAD
=

Creating software visualy to create faster

With RAD you gain time so you gain money.
The Very Rapid Applications Development
permits to create your personal management
software erasing a stage of software
programming.

1.2) Bad exemples : API Toolkits

An API is a toolbox to program
The Management APIs need :
 To create some sources hardly manipulable
 To program and create on the same way

An engineer can transform The Management API
to create the software management interface from
some VRAD library files like LEONARDI.

1.3) How to create a library ?

Only one rule : Lesser copy-paste

Creating a framework steps :
 At the begining we create some functions units
 So we use and inherit some components
 We create some components packages
 We automate some components in a library
 So we open our library to other APIs
 The library is not used with any code

1.4) Rapid Applications
Development (RAD)

 Creating visually a software
 To gain some time creating
 To create a customised software

Most of RAD tools not automate enought
Enterprise Management Software.

The Very Rapid Application Development makes
RAD better for Management Servers and other
defined interfaces.

2.1) Very Rapid Applications
Development

A software is composed by :
 What the user wants
 Computing technics

With or without RAD tools we :
 Mixed technical and user part
 Remade a software entirely

The user part must be kept.

2.2) Very Rapid Applications
Development

VRAD permits to delete the stage of software
programming from analysis.

So it permits to create the interface from passive
files.

The VRAD is the next step of RAD and
components programing.

2.3) Passive files
vs classic RAD

With passive files we :
 Think funtionnalities and user part
 Define some themes easily
 Define what is made faster
 Define what is not on models
 Create some plugins for what is not made
 Know where we go
The RAD or VRAD permit to work on the front of
the project to anticipate the future components.

2.4) Interesting of Very Rapid
Applications Development

Le Very Rapid Development permits :
 Less errors be produced
 To create only the software analysis at the end
 To gain some time when creating
 To be self-sufficient of any framework
 That the programmer thing functionnalities
 To make better the quality of softwares
The RAD and VRAD are integrated and agility
quality.

2.5) Creating an interface
with passive files : VRAD

It is now possible to create a management
interface from simple passive files.
A passive file containing user part is read and
creates the interface from VRAD engine.
 GLADE GTK permits to create an interface not

linked to date from passive files.
 LEONARDI permits to create a management

interface from passive files.
 LIBERLOG owns a RAD framework adapting to

VRAD.

2.6) VRAD Quality

With a VRAD engine :
 We gain in time and be more agile
 We facilitate the making of future softwares
 Test only the engine, not the created interface
 The analysis is the software
 The maintenance is centralised
 The programer goes to the fundamental

3.1) Iterative components
programing ?

Programming funtionalities permits to :
 Keep that has been done
 Create a framework and share it if wanted
 Use really engineering and participate
 User create the software with analyst
 User be respected
 Make better
 Gain some time, some listening

3.2) Iterative components
programing ?

The component permits to :

 Make one source for some technics
 Adapt an human micro-technic
 Gain some time in RAD
 Facilitate programmers working on RAD
 Anticipate on customer demands
 Delete the copy-paste
 Make better software

3.3) Iterative components
programing – The team

Programming funtionalities needs :

 Two engineers unless for components
 Some analysts to exchange with customer
 Some weekly or monthly revues with customer
 A adaptive, comprehensive, listening

management team
 A customer understood who know how is made

his software to know how to make it better how
he wants

3.4) Iterative components
programing – Quality

Programming funtionalities needs :

 Some simple, modularly and generic concepts
 Some unit tests on components
 The will to make better components
 To communicate with models and interface
 A feedback to anticipate on components
 Some components created with two engineers

3.5) Iterative components
programing – The software

Programmers or Software Analysts :
 Demand an daily exchange with engineers and

customer
 Need to create software easily
 Made lesser on no programming
 Do not need unit tests

The software is visible with an interface,
inspected, adapted. The begining interface is the
future software.

3.6) Iterative components
programing – The component

A component :

 Needs a logical structure
 Must be readable, organised, simple, revued
 Has lesser objectives
 Inherits of technics that must be done
 Needs to organise looking on future
 Needs some searching
 Needs to have the herited sources

3.7) Iterative components
programing – The components

The components :

 Are created before software
 Are grouped on themas
 Are modeled easily
 Modelise some human micro-technics
 Permit to create the interface easily
 Permet to gain lot of time on RAD

3.8) Iterative components
programing – Programmers

The software or components sources :

 Own to every programmers of the team
 Own at the begining the participating workers
 Need the names when modifying
 Need some revues for the good and bad points,

growing and ungrowing
 Need to know where we go

4.1) Rapid Development vs
Command Line

Example : Creating a simple form

A centralised code used with some copy-paste
 3 days and it is not always finished

Same making with a RAD tool
 Analysing ½ day and ½ day of creating
 The component automatee some creating
 The form is usable with less tests

4.2) Passive files of VRAD vs RAD

Passive files :
 Permit to define the Job Part in their mind
 Can be created from analytic or data
 Can be slef-sufficient from all used framework
 Are defined a must be evolutive
 Permit to creating some more interfaces
 Permit to think functionality
The analysis of ½ day qui creates the software.
The analysis is always same as created software.

4.3) Publishing

It is time to ask ourselves some questions. To
become a publisher and :

 Publish his self-made at a lot of customers
permits to satisfy future customers

 Utiliser l'agilité renforce la confiance du client
 Le RAD et VRAD autorisent une élite avec des

analystes orientés communication

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23

